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Abstract

In this article, we consider the problem of computing the expected discounted value
of a death benefit, e.g. in Gerber et al. (2012, 2013), in a regime-switching economy.
Contrary to their proposed discounted density approach, we adopt the Laplace trans-
form to value the contingent options. By this alternative approach, closed-form ex-
pressions for the Laplace transforms of the values of various contingent options, such
as call/put options, lookback options, barrier options, dynamic fund protection, and
the dynamic withdrawal benefits, have been obtained. The value of each contingent
option can then be recovered by the numerical Laplace inversion algorithm, and this
efficient approach is documented by several numerical illustrations. The strength of
our methodology becomes apparent when we tackle the valuations of exotic contingent
options in the cases when (1) the contracts have a finite expiry date; (2) when the
time-until-death variable is uniformly distributed in accordance with De Moivre’s law.

Keywords: Regime switching; Jump-diffusion process; Equity-linked death benefits;
Guaranteed minimum death benefits; First passage probabilities.

1 Introduction

To accommodate clients with different preferences, many life insurance companies offer insur-
ance protections embedded with different features such as interest rate guarantees, bonus and
surrender options, participating policies, and equity-linked policies. The fair values for these
option-embedded life insurance contracts are crucial to insurance companies for financial
reporting purposes.

Since the late 1970’s, option pricing theory has been applied to the fair pricing of these
life insurance contracts. To see this, let us consider the guaranteed minimum death benefit
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(hereafter, GMDB) in a variable annuity for an individual age x with the guaranteed payment
in case of his death,

max(STx , K) = STx︸︷︷︸
Account value

+ (K − STx)+︸ ︷︷ ︸
Put option payoff

, (1)

where Tx is the time-until-death random variable and K is the guaranteed minimum amount.
The second term on the right-hand side of (1) constitutes the put option with strike price
K and maturity Tx.1 Early works focused on the valuation of life insurance products when
(St)t≥0 follows a geometric Brownian motion. Brennan and Schwartz (1976, 1979) employed
the Black-Scholes formula to value life insurance products with different options. Boyle
and Schwartz (1977) investigated different dimensions of equity-linked life insurance policies
in addition to those in Brennan Schwartz (1976). Ronn and Verma (1986) provided an
empirical estimate for deposit insurance premiums. Albizzati and Geman (1994) provided
the fair value of surrender options in the life insurance policies. Bacinello (2001) studied the
fair valuation of participating policies with minimum rate guarantees. Milevsky and Posner
(2001) evaluated fair insurance risk fees for GMDBs in variable annuities (VAs) and some
mutual funds. Lee (2003) proposed another type of equity-indexed annuity embedded with
path-dependent options that can increase the participation rates.

As discussed in Gerber et al. (2013) and the references therein, modeling the stock price
process as a jump-diffusion process, i.e. Brownian motion plus an independent Poisson pro-
cess, provides important economic features for its ability in capturing the empirical facts such
as volatility smiles and heavy tails, as, for example, documented in Merton (1976) that are
absent in the Brownian motion framework. Among the popular jump-diffusion models, it is
also well-recognized that the jump-diffusion models become highly tractable when the distri-
bution of the jump sizes can be represented as a combination of exponential distributions.
Examples include Dufresne and Gerber (1988, 1991), Chan (1990), Gerber et al. (2006),
and Dong (2011) on the closed-form expressions for the probability of ruin, discounted divi-
dends until ruin, and the applications in the fair valuations of the option-embedded insurance
contracts under this special jump-diffusion model.

As the durations of life insurance contracts amount to years or even decades, these contracts
should subject to the changes of economic regimes. Yet, the aforementioned literature fo-
cused on the valuations of option-embedded insurance contracts under models with constant
or time-dependent coefficients. In this respect, Markov regime-switching models, in which
the dynamics of the change of economic regimes is modeled by a Markov chain, capture the
state-dependent effect while maintaining a high degree of tractability. One important work
on Markov switching models is Hamilton (1989), in which he introduced a tractable dynamic
model with Markov regime-switching between regimes to capture the endogenous structural
breaks in the business cycle. Moreover, Hardy (2001) showed that the regime-switching
lognormal model provides significant improvement over all other models in the sense of maxi-
mizing the likelihood function when she fitted different models on the monthly data from the
Standard & Poor’s 500 and the Toronto Stock Exchange 300 indices. For the fair valuations

1Equivalently, the same GMDB in a variable annuity can also be expressed in terms of the call option by
the following relation:

max(STx
,K) = K︸︷︷︸

Account value

+ (STx
−K)+︸ ︷︷ ︸

Call option payoff

.
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of the financial and insurance products under the Markov regime-switching models, see, for
example, Siu (2005), Boyle and Draviam (2007), Elliott and Siu (2009), and Yuen and Yang
(2009).

In this article, we tackle the valuation of variable annuities via the Laplace transform instead
of the density approach proposed in Gerber et al. (2012, 2013), as the density of the regime-
switching jump-diffusion process lacks a tractable form. We first assume that the time-until-
death random variable Tx of a person at age x is represented as a combination of exponential
distributions, independent of the underlying asset dynamics. Representing the distribution
of Tx as a combination of the exponential distributions has two advantages. First, it will
become clear in the paper that the valuation of the variable annuities under the exponentially-
distributed Tx is equivalent to the Laplace transform of the contingent claims with respect to
the maturity T . Moreover, we show that the variable annuities in Gerber et al. (2012, 2013)
retain closed-form expressions to a large extent, when we also assume that the underlying
asset dynamics exhibit exponentially-distributed jump sizes in each regime. The tractability
is made possible due to the fact that we can exploit the elementary expression for the first
passage time distribution developed in Siu (2012), thereby facilitating us to compute the fair
values of GMDBs under which distribution of the maximum or minimum values of the assets
is required. Secondly, the exponentially-distributed Tx is not a strong modeling restriction
due to the fundamental result that all combinations of exponential distributions are weakly
dense in the space of all probability distributions on the positive axis (see Botta and Harris
(1986)). In light of this, we expand the scope of the Laplace transform framework by valuing
GDMBs using the combination of exponential distributions calibrated to a life table.

The rest of the paper is organized as follows. Section 2 introduces the model settings.
Section 3 presents analytical valuations of various GMDBs. In Section 4, we investigate the
valuation problem of T -year options and the case of a uniformly-distributed mortality density
function. Section 5 provides numerical illustrations for the cases when Tx is exponentially
distributed and when mortality rates are obtained from the life table. Section 6 concludes
the paper. Appendix A provides the derivation of the first passage time distribution of
the model process. As will become clear in the paper, valuing fractional lookback options
under the regime-switching framework requires additional model assumptions. For the sake
of completeness, we provide discussion of valuing fractional lookback option in Appendix B.
Appendix C reviews the numerical Laplace inversion algorithm employed in the paper.

2 Model Formulation

Define a probability space by the usual triplet (Ω,F ,Q), where F = (Ft)t≥0 denotes the
filtration generated by the random processes described below and Q denotes the risk-neutral
measure under which every discounted price process is a martingale.2

2Since insurance products are not traded in the market, and that the model in this paper lies in the realm
of incomplete market, there exist infinitely many equivalent martingale measures. As in Dong (2011), we
hereafter assume that the equivalent martingale measure Q under which that every discounted price process
is a Q-martingale has been chosen and call this chosen measure a risk-neutral measure. See, for example,
Schweizer (2010) and the references therein for the optimal selection of risk-neutral measure in the context
of minimal entropy martingale measure under the incomplete market setting.
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2.1 Asset price dynamics St

Following Elliott et al. (1994), we model the evolution of the state of the economy over time
via a Markov chain.

Let (Jt)t≥0 be a continuous-time, time-homogeneous, Markov chain on a finite state space
E = {1, ..., d}. More precisely, (Jt)t≥0 is right-continuous and irreducible on E such that
Jt = i means the state of the economy at time t is i.

Let Q be the intensity matrix of Jt with respect to the Lebesgue measure, i.e.

Q = {qij}i,j∈E ,

where qij ≥ 0, for i 6= j, qii = −
∑

i 6=j qij ≤ 0.

Let {(Xj
t )t≥0; j ∈ E} be a family of mutually independent, double-exponential jump diffusion

processes (see Kou (2002)), i.e.

Xj
t = Xj

0 + bjt+ σjW
j
t +N j

t , (2)

where Xj
0 ∈ R is a constant and (W j

t )t≥0 denotes a standard Brownian motion; bj and
σj > 0 are constants describing the drift and volatility of Xj, respectively; and (N j

t )t≥0 is a
compound Poisson process, independent of (W j

t )t≥0, with a constant arrival rate λj ≥ 0 and
random jump sizes V j having double exponential distribution νj(dy), i.e.

νj(dy) =
(
pjηj1e−ηj1y1{y≥0} + (1− pj)ηj2eηj2y1{y<0}

)
dy,

where pj ∈ [0, 1], ηj1 > 1 and ηj2 > 0. In addition, (W j
t )t≥0 and (N j

t )t≥0 are independent of
the Markov chain (Jt)t≥0.

From the standard theory of Lévy processes (see, for example, Cont and Tankov (2004)), the
distributional properties of each Lévy process can be recovered from its own moment gener-
ating function. In fact, as shown in Kou (2002), the Lévy-Khintchine formula on

(
Xj
t

)
t≥0

,
for j = 1, ..., d, admits an explicit form, i.e.

E[exp(uXj
t )] = exp(κj(u)t), for t ≥ 0, u ∈ R \ {ηj1,−ηj2}, (3)

where

κj(u) = bju+
σ2
j

2
u2 + λj

(
pjηj1
ηj1 − u

+
(1− pj)ηj2
ηj2 + u

− 1

)
. (4)

We are now ready to give a precise definition of the regime-switching, double-exponential
jump-diffusion process considered in this paper.

Definition 2.1. Define an asset price St = S0 exp(Xt), where the regime-switching, double-
exponential jump-diffusion process, denoted by (Xt, Jt)t≥0, is defined pathwisely via

dXt , dXJt
t , X0 , XJ0

0 = 0.

That is, conditional on {Jt = j}, Xj
t is a double-exponential jump-diffusion process of the

form in (2).
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By Definition 2.1, the regime-switching, double-exponential jump process (Xt, Jt)t≥0 has the
following canonical representation:

Xt = XJ0
0 +

∫ t

0

bJsds+

∫ t

0

σJsdW
Js
s +

∑
j∈E

∫ t

0

1{Js=j}dN
j
s . (5)

Direct application of Itô’s Lemma gives the corresponding infinitesimal generator for (Xt, Jt)t≥0,
denoted by A.

Lemma 2.2. Let f : R×E → R be a function that is twice continuously differentiable in R.
Then, the infinitesimal generator for (Xt, Jt)t≥0, denoted by AL, takes the form

Af(x, i) , lim
t→0

E[f(Xt, Jt)|X0 = x, J0 = i]− f(x, i)

t

= bi∂xf(x, i) +
1

2
σ2
i ∂xxf(x, i)

+

∫
R\{0}

(
f(x+ y, i)− f(x, i)

)
λiνi(dy) +

∑
j∈E

qijf(x, j).

Denote Qi[.] , Q[.|J0 = i] and Ei[.] , E[.|J0 = i]. Parallel to the case of jump-diffusion
processes, the moment generating function describes the distributional properties of regime-
switching jump-diffusion process (Xt, Jt)t≥0.

Proposition 2.3. Denote by Ft[u] the d× d matrix with (i, j)th element Ei[euXt ; Jt = j] and
u ∈ R \ {ηj1,−ηj2, j = 1, ..., d}.

Then, the moment generating function Ft[u] for (Xt, Jt)t≥0 in Definition 2.1 takes the form
as follows:

Ft[u] = etK[u], (6)

where

K[u] = Q + A.

Here, A , {κj(u)}diag denotes the d× d matrix in which Ajj = κj(u) and 0 otherwise. The
Laplace exponent κj(u) is given by (4).

Proof. Direct application of Proposition 2.1 in Asmussen (2003) to our model yields the
desired result.

Since Q denotes the risk-neutral measure, every discounted price process is a martingale
under Q. To this end, we have the following martingale condition.

Denote ei = (0, · · · , 0, 1, 0, · · · , 0)> ∈ Rd the unit vector with 1 in the i-th component and
1 = (1, · · · , 1)> ∈ Rd. Here, b> denotes the transpose of b. Finally, let I be the d×d identity
matrix.
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Lemma 2.4. Assume that Jt = j. The discounted process (S̄t)t≥0 , (e−rtSt)t≥0 is a Q-
martingale with respect to Ft if and only if

bj = r − 1

2
σ2
j − λj (ζj − 1) ,

where r > 0 is the risk-free interest rate and

ζj =
pjηj1
ηj1 − 1

+
(1− pj)ηj2
ηj2 + 1

. (7)

Proof. Let (X
j

t)t≥0 be a jump-diffusion process with the triplet (−r+ bj, σ
2
j , νj) and the Lévy

exponent κj(u), where

κj(u) , −ur + κj(u), u ∈ R \ {ηj1,−ηj2}.

Following Definition 2.1, define the process dX t , dX
Jt
t . Proposition 2.3 gives us that

E[exp(X t)|Fu] = E
[
exp(Xu)e

>
Ju exp

(
X t −Xu

)
1|Fu

]
= exp(Xu)e

>
Ju exp ((Q + {κk(1)}diag) (t− u)) 1. (8)

From (8), it becomes clear that S̄t = exp(X t) is an Ft-martingale if and only if

e>Ju exp ((Q + {κk(1)}diag) (t− u)) 1 = 1, for all u ≤ t. (9)

We claim that κj(1) = 0 is a necessary and sufficient condition for (9) to hold for all t ≥ 0
and j ∈ E. Suppose first that for all j ∈ E, we have

κj(1) = 0, t ≥ 0.

By the definition of Q, Qn1 = 0, where n ∈ N. Hence Q has an eigenvalue of 0 with the
eigenvector 1. This implies that

exp ((Q + {κk(1)}diag) (t− u)) 1 = exp (Q(t− u)) 1 = 1.

Therefore, (9) holds. On the other hand, suppose that (9) holds. By, L’Hôpital’s Rule, we
have

0 = lim
u↓t

e>Ju
1

t− u
[exp ((Q + {κk(1)}diag) (t− u))− I] 1 = e>Jt (Q + {κk(1)}diag) 1 = κJt(1).

Since it must hold for any Jt, we have κj(1) = 0 for all j ∈ E and t ≥ 0. Therefore, the
martingale property of (S̄t)t≥0 = (exp(X t))t≥0 is equivalent to κj(1) = 0 for all j ∈ E and
t ≥ 0.

When valuing the options, we encounter the issue of invertibility of the matrix (aI−K[u]),
for a ∈ R. To this end, Mijatović and Pistorius (2011) provided a sufficient condition for the
inverse of (aI −K[u]) to exist, where a ∈ C. It is reproduced in the following lemma, with
a few modifications to fit into our framework. Throughout the rest of this paper, we denote
<(x) the real part of x ∈ C.
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Lemma 2.5. (Mijatović and Pistorius, 2011)
Let a ∈ C and assume that <(a) > max{<(κi(u)) : i = 1, . . . , d}, then

K[u]− aI = Q− (aI− {κi(u)}diag)

is invertible and

lim
T→∞

∫ T

0

exp((K[u]− aI)t)dt = (aI−K[u])−1.

As we shall see in Section 3, the valuations of the GMDBs can be greatly simplified in some
cases when the underlying asset price process is the numéraire. In this respect, we conclude
this section with the following proposition.

Proposition 2.6. Define Q̃ to be an equivalent martingale measure of Q via the Radon-
Nikodym derivative

dQ̃
dQ

∣∣∣
Ft

= e−rt
St
S0

. (10)

Let (Xt, Jt) be the regime-switching, double-exponential jump-diffusion process in Definition
2.1 under measure Q. Then, the process (Xt, Jt)t≥0 remains a regime-switching, double-
exponential jump-diffusion process under Q̃ with the moment generating function denoted by
F̂t[u] as follows.

For u ∈ R \ {η̃j1,−η̃j2, j = 1, ..., d},

F̂t[u] = etK̂[u],

where
K̂[u] = Q + {κ̃j(u)}diag,

and the corresponding Lévy exponent κ̃j(u) is

κ̃j(u) = b̃ju+
σ2
j

2
u2 + λ̃j

(
p̃j η̃j1
η̃j1 − u

+
(1− p̃j)η̃j2
η̃j2 + u

− 1

)
,

with b̃j = bj + σj, λ̃j = λj(ζj + 1), p̃j =
pjηj1

(ζj+1)(ηj1−1)
, η̃j1 = ηj1 − 1, η̃j2 = ηj2 + 1, and ζj

takes the form in (7).

Proof. One can either follow the proof in Proposition 2.1 of Asmussen (2003), together with
Proposition 9.8 of Cont and Tankov (2004), or directly apply Theorem 4.3.1 of Siu (2012) to
our model to obtain the desired result.

2.2 First passage time distribution of (Xt, Jt)t≥0

As it will become clear in the following sections, valuing certain life-contingent contracts
hinges on the knowledge of the distribution of the maximum or the minimum of the asset
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price over the life of the contract. This implies that we need to know the distribution of
the first passage time of the asset price. More specifically, we are interested in finding the
distribution of the first time when Xt exits a pre-specified interval. Denote τB the first exit
time of Xt from an interval [L,U ], i.e.

τB , inf{t ≥ 0 : Xt /∈[L,U ]}, (11)

where L < X0 = x < U and J0 = i.

It is easy to see that finding the first passage time distribution is equivalent to solving
Ei[e−aτB+bXτB ] by the optional stopping theorem, which admits an explicit structure under
our model. See also Asmussen et al. (2004) for the two-regime case, i.e. E = {1, 2}.

To compute Ei[e−aτB+bXτB ], we first transform the original process (Xt, Jt)t≥0 into a fluid
process (X̃t, J̃t)t≥0 by removing the jumps in the sample path of (Xt, Jt)t≥0. For the ease
of exposition, we shall only state the representation of the first passage time distribution of
(Xt, Jt)t≥0 (Theorem 2.7 and Corollary 2.8) in the remainder of the section. See Appendix
A for the construction of the fluid process (X̃t, J̃t)t≥0 and the corresponding proofs.

Define

K̃a[u] =


K̃

1

a[u] O · · · O

O K̃
2

a[u] · · · O
...

. . .
...

O · · · O K̃
d

a[u]

+

 Q̃11 · · · Q̃1d

...
. . .

...

Q̃d1 · · · Q̃dd

 , (12)

where

K̃
j

a[u] ,

bju+
σ2
j

2
u2 − λj − a λj(1− pj) λjpj

ηj2 ηj2 + u 0

ηj1 0 ηj1 − u

 , j = 1, ..., d,

and

Q̃ii =

qii 0 0
0 0 0
0 0 0

 , Q̃ij =

qij 0 0
0 0 0
0 0 0

 , i, j = 1, ..., d.

By Lemma A.5, we can denote %l,a, for l = 1, ..., 4d, to be the distinct real roots of the
equation

det
(
K̃a[u]

)
= 0;

for each %l,a, let

hl[a] =

hl1[a]
...

hld[a]

 , hlj[a] =

hl(j,0)[a]

hl(j,−)[a]

hl(j,+)[a]

 , j = 1, ..., d, (13)
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be the basis of the kernel of K̃
X

a [%l,a], for l = 1, ..., 4d. With (13), define a 4d × 4d matrix
H[a] as follows:

H[a] ,

 h̃1
1[a] . . . h̃1

d[a]
...

. . .
...

h̃4d
1 [a] . . . h̃4d

d [a]

 , (14)

and h̃lj[a] is a 4× 1 vector of the form,

h̃lj[a] ,
(
e%l,aUhl(j,0)[a], e%l,aUhl(j,+)[a], e%l,aLhl(j,0)[a], e%l,aLhl(j,−)[a]

)
, (15)

where l = 1, ..., 4d, and j = 1, ..., d.

Let

x[a] ,
(
e%1,axh1

(i,0)[a], . . . , e%4d,axh4d
(i,0)[a]

)>
. (16)

The following theorem provides the representation of Ei[e−aτB ].

Theorem 2.7. Assume that J0 = i, and

−∞ < −ηd2 < ... < −η12 < 0 < η11 < ... < ηd1 <∞.

Then, for any a > 0,
Ei[e−aτB ] = π[a]>1,

where the 4d× 1 vector π[a] is the solution of the following system of linear equations:

x[a] = H[a]π[a], (17)

where H[a] and x[a] are defined in (14) and (16), respectively.

Proof. See Appendix A.3 for a proof.

To compute Ei[e−aτB+bXτB 1{JτB=j}], we can invoke the properties of conditional independence
and memoryless in Corollary A.2 and obtain the following corollary.

Corollary 2.8. Let f̂ be a 4d× 1 vector of the following form,

f̂ [b] ,
(
f̂U(1,0)[b], f̂

U
(1,+)[b], . . . , f̂

L
(d,0)[b], f̂

L
(d,−)[b]

)>
,

(18)

where

f̂U(j,0)[b] , ebU , f̂U(j,+)[b] ,
ηj1
ηj1−be

bU ,

f̂L(j,0)[b] , ebL, f̂L(j,−)[b] ,
ηj2
ηj2+b

ebL.
(19)

Then,

Ei
[
e−aτB+bXτB

]
= π[a]>f̂ [b],

where J0 = i, X0 = x, and π[a] is the solution in Theorem 2.7.
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Proof. See Appendix A.3 for a proof.

Example 2.1. Consider the case of two regimes, i.e. E = {1, 2}. Let γl =
κ2(%l,a)−a−q22

q22
, l =

1, ..., 8, where the %l,a’s are obtained solving the following equation

0 = det(K̃a[u]) = (κ1(u)− a− q11) (κ2(u)− a− q22)− q11q22.

In addition, in this case, the basis of the kernel of {hl[a]}l=1,...,8, admits an explicit form as
follows. For each l = 1, ..., 8, it follows that

hl[a] =

(
hl1[a]

hl2[a]

)
, hl1[a] =


γl

γrη12

η12 + %l,a
γrη11

η11 − %l,a

 , hl2[a] =


−1
−η22

η22 + %l,a
−η21

η21 − %l,a

 . (20)

Applying Corollary 2.8 to (20), we can then obtain the explicit representations of Ei[e−aτB+bXτB ].

2.3 Time-until-death Tx

As discussed in the introduction, Botta and Harris (1986) showed that the family of all
combinations of exponential distributions approximates any probability distribution on the
positive axis with arbitrary accuracy. The combination of exponential distributions has also
found its place in mortality modeling. In particular, Dufresne (2007) used combinations of
exponentials to construct the Jacobi polynomial expansion and logbeta distribution schemes
to approximate many well-known distributions in actuarial literature. In light of these results,
it suffices for us to consider the problems of valuing equity-death benefits under the assump-
tion that the time-until-death random variable is exponentially distributed, i.e. with density
function given in (21) below. In Section 5.1, we revisit the valuations of the equity-death
benefits using combinations of the exponential functions calibrated to a life table.

Denote by Tx the time-until-death random variable for a person of age x, independent of the
price process (St)t≥0. Based on the above discussion, we assume that Tx is exponentially-
distributed with probability density function

fTx(t) = αe−αt, α > 0, t > 0, (21)

where α denotes the force of mortality.

3 Application to valuations of different options

As in Gerber et al. (2012, 2013), we are interested in valuing embedded options of the form

E[e−rTxb(Tx, STx)], (22)
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where b is called an equity-indexed benefit function. Since the time-until-death random
variable of an individual at age x, Tx, is independent of the stock price process St, (22)
becomes

E[e−rTxb(Tx, STx)] =

∫ ∞
0

E[e−rT b(T, ST )]fTx(T )dT = α

∫ ∞
0

E[e−rT b(T, ST )]e−αTdT.

The above representation is indeed the Laplace (Carson) transform of E[e−rT b(T, ST )] with
respect to the maturity T , evaluated at the force of mortality α.

We denote by Lϕ(·) and L−1
k (·) the Laplace transform and inverse Laplace transform operators

with respect to ϕ and k, respectively. To recover the value of each option, we need to perform
a numerical Laplace inversion. We shall adopt the Abate-Whitt algorithm, first proposed by
Abate and Whitt (1992) on R+ and later extended by Petrella (2004) to R. The basic ideas
behind the Abate-Whitt algorithm are delegated in Appendix C.

3.1 Basic options

As discussed in the introduction, finding the fair value of the basic option with the payment of
max(STx , K) to the beneficiary of the policy rider upon the policyholder’s death Tx amounts to
computing the fair (discounted) value of the option with the equity-indexed benefit function
given as follows:

b(Tx, STx) = (K − STx)+. (23)

To value this put option, the equity-indexed benefit function b(Tx, STx) indicates that only
the knowledge of the distribution of the asset price at the time Tx is required. In the Laplace
transform framework, we have the following result.

Theorem 3.1. Let Tx be the time-until-death random variable with the density function (21).

For all ϕ satisfying 0 < ϕ < minj∈E{ηj1 − 1} and α + r > maxj∈E{κj(ϕ + 1)}, where κj(u)
is given in (4), the value of the basic call option, denoted by C(K,Tx, i), takes the form

C(K,Tx, i) = Ei[e−rTx(STx −K)+]

= L−1
k

(
αχ−ϕSϕ+1

0

ϕ(ϕ+ 1)
e>i ((α + r)I−K[ϕ+ 1])−11

)
, (24)

where k = − log(K/χ) and χ > K is the scaling parameter.3 The value of the basic put
option, denoted by P (K,Tx, i), takes the form

P (K,Tx, i) = Ei[e−rTx(K − STx)+]

= L−1
k

(
αχ−ϕSϕ+1

0

ϕ(ϕ+ 1)
e>i ((α + r)I−K[ϕ+ 1])−11

)
− S0 +

α

α + r
K. (25)

3As discussed in Petrella (2004) and Cai and Kou (2011), the presence of the scaling parameter χ makes the
bilateral Abate-Whitt algorithm on R faster and more stable than the original Abate-Whitt algorithm. We
make use of the scaling parameter χ when we perform bilateral Laplace transforms, i.e. Laplace transforms
on the entire real line R. See Appendix C for the discussion on the role of χ in the numerical implementations.
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Proof. We first prove (24).∫ ∞
−∞

e−ϕkχEi

[
e−rTx

(
S0

χ
eXTx − e−k

)+
]

dk

=

∫ ∞
0

αe−(α+r)TχEi

[∫ ∞
− log(S0χ eXT )

e−ϕk
(
S0

χ
eXT − e−k

)
dk

]
dT

= χ

(
S0

χ

)ϕ+1 ∫ ∞
0

αe−(α+r)T
∑
j∈E

Ei
[

e(ϕ+1)XT

ϕ(ϕ+ 1)
1{JTx=j}

]
dT

= χ

(
S0

χ

)ϕ+1
α

ϕ(ϕ+ 1)
e>i

(∫ ∞
0

e−((α+r)I−K[ϕ+1])TdT

)
1

= χ

(
S0

χ

)ϕ+1
α

ϕ(ϕ+ 1)
e>i ((α + r)I−K[ϕ+ 1])−11,

where we makes use of the Fubini Theorem twice in the first equality, Proposition 2.3 and
the independence assumption between St and Tx, for all t ≥ 0, in the fourth equality, and
Lemma 2.5 in the last equality. The price of the call option C(K,Tx, i) then follows by taking
the inverse Laplace transform of (26) with respect to k. Finally, the price of the put option
P (K,Tx, i) can be obtained by combining (24) with the put-call parity:

C(K,Tx, i)− P (K,Tx, i) = S0 −KE
[
e−rTx

]
= S0 −

α

α + r
K.

Observe that Theorem 3.1 covers out-of-money, at-the-money, and in-the-money call options.
Moreover, the proof of Theorem 3.1 also includes the pricing of all-or-nothing options. As
discussed Gerber et al. (2012, 2013), the valuation of the basic options in Theorem 3.1 can be
extended to accommodate additional contractual features. For example, consider the basic
option with roll-up or rising-floor feature, discussed in Milesvsky and Posner (2001) and Ulm
(2006, 2008). Following the notations in Ulm (2006, 2008), we let p to be the “roll-up” rate
such that 0 ≤ p ≤ r to preclude any arbitrage opportunities. Then, the roll-up GMDB has
the following equity-indexed benefit function

broll-up(Tx, STx) , (KepTx − STx)+. (26)

Since (26) can be rewritten as

(KepTx − STx)+ = epTx(K − e−pTxSTx)+,

we can simply apply Theorem 3.1 to value the roll-up put option in (26) with ŜTx = e−pTxSTx
and discount factor equals e−(r−p)Tx .

On the other hand, let us consider the basic option with the possibility of lapses or policy
surrenders. We first assume that the decision of lapses or surrenders is independent of both
the mortality random variable Tx and the asset price process St (see Ulm (2006, 2008)).4

4We defer the discussion of the valuation of the options in which the decisions of lapses or surrenders
depend on the path of the underlying asset to Section 3.3.
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Consider the case of a deterministic, non-increasing function g(t) such that, given Tx = t,
g(t) denotes the probability that the policy has not been lapsed by time t. Hence, the GMDB
with deterministic lapse rate has the following equity-indexed benefit function

blapse(Tx, STx) , g(Tx)(K − STx)+. (27)

If g(t) = e−νt, with some constant ν > 0 denoting the force of surrender, the fair value of
the GMDB with equity-indexed benefit function in (27) becomes

E[e−(r+ν)Txblapse(Tx, STx)].

We can then apply Theorem 3.1 by replacing r with r̂ = r + ν.

3.2 Lookback options

Instead of considering a constant minimum guaranteed amount K, as is the case in Section
3.1, let us analyze the GMDB with the guaranteed minimum amount being the running
maximum of the underlying asset St at any time t, i.e. K = max0≤s≤t Ss. That is, the
equity-indexed benefit function for this option at Tx becomes

blookback(Tx, STx) , max
0≤s≤Tx

Ss − STx . (28)

This can be achieved by selling and then repurchasing the contract at the new level. The
GMDB with the running maximum of the asset price as the guaranteed minimum amount
is called lookback option and has been considered in Milevsky and Posner (2001) and Gerber
et al. (2012) under the Brownian motion framework, and Gerber et al. (2013) under the
jump-diffusion framework. In this section, we consider the fair value of the lookback option
under the regime-switching jump-diffusion framework.

3.2.1 Standard lookback options

Since the lookback option with the equity-indexed benefit function in (28) constitutes a
floating strike lookback put option, we begin our discussion with the valuation of a floating-
strike lookback put option. Other situations, such as fixed strike lookback call/put options,
can be treated analogously. Let M be the initial maximum of the asset price, then the
floating-strike lookback put is given as

LP (S0,M, Tx, i) , Ei
[
e−rTx(max(M, max

0≤t≤Tx
St)− STx)

]
= S0Ei[e−rTx max(ez, eM

X
Tx )]− S0

= S0Ei[e−rTx(eM
X
Tx − ez)1{MX

Tx
≥z}] + S0ezE

[
e−rTx

]
− S0, (29)

where z , log(M/S0), MX
Tx

, supt≤Tx Xt, and J0 = i. Under the regime-switching jump-
diffusion framework, the value of the standard lookback put option in (29) is given as follows:

Theorem 3.2. Let Tx be the time-until-death random variable with the density function (21).

13



The value of the standard lookback option is

LP (S0,M, Tx, i) =
αS0

α + r

∫ ∞
z

em
∑
j

Ei[e−(α+r)τm1{Jτm=j}]dm+
Mα

α + r
− S0, (30)

where
τm , inf{t ≥ 0 : Xt ≥ m}.

To facilitate the proof of this theorem, we need the following two lemmas.

Lemma 3.3.
lim
m→∞

emQi[M
X
T ≥ m] = 0, for all T ≥ 0. (31)

Proof. Let θ ∈ (maxj∈E{−ηj2},minj∈E{ηj1}). Observe that{
exp (θXt − κJt(θ)t)

}
t≥0

is a martingale. Fix θ ∈ (1,minj∈E{ηj1}) such that κJt(θ) > 0. Such a θ always exists as
κJt(θ) is continuous on (1,minj∈E{ηj1}) and since κJt(1) = rJt ≥ 0 (see (4)) . It follows that

emQi[M
X
T ≥ m] = e(1−θ)meθmQi[M

X
T ≥ m] = e(1−θ)meθmQi[τm ≤ T ]

≤ e(1−θ)m Ei[eθXτm∧T ]

≤ e(1−θ)meκJT (θ)TEi[exp
(
θXτm∧T − κJT∧τm (θ)(T ∧ τm)

)
]

= e(1−θ)meκJT (θ)T ,

where the last equality follows from the Doob’s optional sampling theorem.

Note that we can replace the T in Lemma 3.3 with Tx since Tx is independent of St, for
all t ≥ 0. To value the desired lookback option, closer observation reveals that one can
decompose the lookback option into the sum of two digital options, which are detailed in
following lemma:

Lemma 3.4.

e−rTEi
[
eM

X
T 1{MX

T ≥z}

]
= e−rTEi

[
ez1{MX

T ≥z}

]
+ e−rT

∫ ∞
z

emQi[M
X
Tx ≥ m]dm.

Proof.

e−rTEi
[
eM

X
T 1{MX

τ ≥z}

]
= −e−rT

∫ ∞
z

emdQi[M
X
T ≥ m]

= −e−rT
{
− ezQi[M

X
T ≥ z]−

∫ ∞
z

emQi[M
X
T ≥ m]dm

}
= e−rTEi[ez1{MX

T ≥z}
] + e−rT

∫ ∞
z

emQi[M
X
T ≥ m]dm,

where in the second equality we first perform integration by parts and then make use of the
fact that limm→∞ emQi[M

X
T ≥ m|Tx = T ] = 0, proved in Lemma 3.3.
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With the necessary results in place, we are now in position to prove Theorem 3.2.

Proof of Theorem 3.2. By the Fubini Theorem and Lemma 3.4, we see that

LP (S0,M, Tx, i) = S0

∫ ∞
z

em
∫ ∞

0

αe−(α+r)TQi[M
X
T ≥ m]dTdm+

Mα

α + r
− S0.

Since Qi[M
X
T ≥ m] = Qi[τm < T ], we have∫ ∞

0

e−(α+r)TQi[M
X
T ≥ m]dT =

∫ ∞
0

e−(α+r)TQi[τm < T ]dT.

Invoking the Fubini Theorem once more, we have∫ ∞
0

e−(α+r)TQi[τm < T ]dT =
1

α + r

[∑
j∈E

Ei[e−(α+r)τm1{Jτm=j}]

]
.

Since Tx and St are mutually independent for all t ≥ 0, it follows that

LP (S0,M, Tx, i) =
αS0

α + r

∫ ∞
z

em
∑
j∈E

Ei[e−(α+r)τm1{Jτm=j}]dm+
Mα

α + r
− S0.

To complete the remaining computation, we need to know how to evaluate Ei[e−(α+r)τm1{Jτm=j}],
which is covered in Section A.3. Unlike the case of the basic options in Section 3.1, Theorem
3.2 involves no use of the inverse Laplace transform to recover the standard lookback options
within our model.

Remark 3.5. In Gerber et al. (2012, 2013), the valuation of fractional lookback option
follows naturally through the discounted densities, thanks to the property of stationary in-
crements of Lévy processes. The presence of the regime-switching factor, i.e. the Markov
chain (Jt)t≥0, complicates the problem significantly as the property of stationary increments
no longer holds. The usual strategy is to perform the change-of-numéraire technique in Propo-
sition 2.6. Yet, the change-of-numéraire technique is applicable to the pricing of the fractional
lookback options under the regime-switching framework only when the Markov chain (Jt)t≥0

is reversible. However, a reversible Markov chain is a special form of Markov chain. For
this reason, we choose not to discuss the valuation of fractional lookback options in this sec-
tion, but rather defer it to Appendix B, where we shall solve the valuation problem under the
additional assumption that the Markov chain (Jt)t≥0 is reversible.

3.3 Barrier options

Let us now revisit the GMDB with the possibility of lapses or surrenders in Ulm (2006, 2008),
i.e. the GMDB with the equity-indexed benefit function at the death of the investor, Tx, as
follows:

blapse(Tx, STx) = g(Tx)(STx −K)+,
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where g(t) denotes the probability that the policy has not been lapsed by the time t. Instead
of assuming that g is deterministic, as in Section 3.1, we are interested in the case when the
decision of lapse or surrender depends on whether the underlying asset price has breached over
some pre-specified barrier. As shown in Milevsky and Posner (2001) and Gerber et al. (2012,
2013), the valuation of the GMDB contract under which the decision of lapses or surrenders
depends on the crossings of the pre-specified barriers is equivalent to the fair valuation of
barrier options. In addition, Dong (2011) also showed that the concept of the barrier option
under the jump-diffusion framework can be applied to the fair valuation of some life insurance
contracts with the consideration of default risk. In this respect, we discuss the fair valuation
of barrier options in this section.

A knock-in barrier option comes into existence if the underlying asset has reached a pre-
specified barrier or interval before maturity Tx, whereas a knock-out option expires worthlessly
if the barrier or interval has been reached before maturity Tx. The connection between the
knock-in and knock-out option can be expressed by the following parity relation:

Knock-in option + Knock-out option = basic option. (32)

In this section, we illustrate the valuation of up-and-in and up-and-out call options in our
model. Other barrier options such as up-and-out, down-and-in, down-and-out, and double
barrier options follow analogously.

Let τU , inf{t ≥ 0 : St ≥ U} and assume that S0 < U and J0 = i. The equity-indexed
benefit functions at the death of the investor, Tx, for up-and-in and up-and-out option with
strike price K, respectively, are:

bup-and-in(Tx, STx) , (STx −K)+1{τU<Tx},

bup-and-out(Tx, STx) , (STx −K)+1{τU>Tx}.

Denote by UIC(S0, K, U, Tx, i) and UOC(S0, K, U, Tx, i) the fair values of the up-and-in and
up-and-out call options, respectively. In other words,

UIC(S0, K, U, Tx, i) = Ei[e−rTx(STx −K)+1{τU<Tx}],

UOC(S0, K, U, Tx, i) = Ei[e−rTx(STx −K)+1{τU>Tx}].

In terms of the inverse Laplace transform, their fair values under our model are given as
follows.

Theorem 3.6. Let Tx be the time-until-death random variable with the density function (21).

For all ϕ satisfying 0 < ϕ < minj{ηj1 − 1} and α + r > maxj∈E{κj(ϕ + 1)}, where κj(u)
is given by (4), the prices of the up-and-in and up-and-out call options take the respective
forms:

UIC(S0, K, U, Tx, i) = L−1
k

(
αχ−ϕSϕ+1

0

ϕ(ϕ+ 1)

∑
j,n∈E

Ei[e−(α+r)τU+(ϕ+1)XτU 1{JτU=j}]Ajn1

)
,(33)

UOC(S0, K, U, Tx, i) = L−1
k

(
αχ−ϕSϕ+1

0

ϕ(ϕ+ 1)
e>i ((α + r)I−K[ϕ+ 1])−11

−αχ
−ϕSϕ+1

0

ϕ(ϕ+ 1)

∑
j,n∈E

Ei[e−(α+r)τU+(ϕ+1)XτU 1{JτU=j}]Ajn1

)
, (34)
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where k = − log(K/χ), A , ((α+ r)I−K[ϕ+ 1])−1 with Ajn denoting the jnth element of
the matrix A.

Proof. We first compute the fair value of the up-and-in call option in (33). Under the as-
sumptions, the Laplace transform exists and using Fubini’s Theorem, we then have

Lϕ(UIC(S0, K, U, Tx, i))

=

∫ ∞
−∞

e−ϕk
∫ ∞

0

αe−(α+r)TEi

[
χ

(
ST
χ
− e−k

)+

1{τU<T}

]
dTdk

=
αχ

ϕ(ϕ+ 1)

(
S0

χ

)ϕ+1

Ei

[∫ ∞
τU

∑
n∈E

e−(α+r)T e(ϕ+1)XT 1{JT=n}dT

]

=
αχ

ϕ(ϕ+ 1)

(
S0

χ

)ϕ+1

Ei

[∫ ∞
0

∑
n∈E

e−(α+r)(s+τU )e(ϕ+1)Xs+τU 1{Js+τU=n}ds

]

=
αχ

ϕ(ϕ+ 1)

(
S0

χ

)ϕ+1

Ei

[∑
j∈E

e−(α+r)(τU )e(ϕ+1)XτU 1{JτU=j}

×
∑
n∈E

Ej
[∫ ∞

0

e−(α+r)s+(ϕ+1)(Xs+τU−XτU )1{Js+τU=n}ds
∣∣∣FτU]

]

=
αχ

ϕ(ϕ+ 1)

(
S0

χ

)ϕ+1∑
j∈E

Ei

[
e−(α+r)τU e(ϕ+1)XτU 1{JτU=j}

∫ ∞
0

∑
n∈E

(
e−(α+r)Is+sK[ϕ+1]

)
jn

ds

]
,

where the third equality follows from the independence assumption of Tx and (St)t≥0, and the
last equality follows from the strong Markov property of Xt. The result follows by invoking
the invertibility of the matrix ((α + r)I − K[ϕ + 1]) (see Lemma 2.5). The corresponding
up-and-out call option in (34) now follows by combining the price of the up-and-in option in
(34), the basic call option in (24), and the parity relation in (32).

To carry on with the remaining computations, we need to know how to compute the term
Ei
[
e−(α+r)τU e(ϕ+1)XτU 1{JτU=j}

]
, which is covered in Section A.3.

3.4 Dynamic fund protection

Dynamic fund protection provides a guarantee that the account value of the investor never
drops below a pre-specified level throughout the life of the contract. More specifically, let
St be the asset price at time t with 0 < L < S0. Denote by nt the number of units of St
purchased at time t. In a dynamic fund protection, as soon as the investor’s account value
drops below the guaranteed level L, nt units of St will automatically be credited into his
account to restore the account value to the guaranteed level L.

Following the discussion in Gerber et al. (2012), nt admits the following representation:

nt = max

(
1, max

0≤s≤t

L

Ss

)
, (35)

17



which indicates that the equity-indexed benefit function for the dynamic fund protection at
the death of the investor Tx is

bProtection(Tx, STx) , max

(
1, max

0≤t≤Tx

L

St

)
STx .

Since

Ei
[
e−rTx max

(
1, max

0≤t≤Tx

L

St

)
STx

]
= Ei

[
e−rTxSTx

(
max

0≤t≤Tx

L

St
− 1

)+
]

+ S0,

we evaluate the expectation above by considering STx as the numéraire.

Let Q̃ be the equivalent martingale measure defined in (10). Under measure Q̃, we have

S0Ei

[
e−rTx

STx
S0

(
max

0≤t≤Tx

L

St
− 1

)+
]

= S0Ẽi

[(
max

0≤t≤Tx

L

St
− 1

)+
]
.

By invoking Proposition 2.6, the remaining computation follows in line with the case of
computing standard lookback options under measure Q̃ in Section 3.2.

3.5 Dynamic withdrawal benefits

In Section 3.4, we focus on the case when the investor enters the dynamic fund protection
with an intention that his fund or asset price never drops below a pre-specified level. In
this section, we consider the case when the investor is interested in entering a contract such
that he will be paid “dividends” whenever the fund or the asset price reaches above a pre-
specified level. Following the nomenclature used in Ko et al. (2010), such a contract is called
a dynamic withdrawal benefit.

More specifically, let St be the asset price at time t and L be the level of the “dividend
barrier” with L ≥ S0. Whenever the investor’s account value reaches above L within the
duration of the dynamic withdrawal benefit, just enough units of St, denoted by nt, will be
sold so that his account value stays at level L.

Following the same reasoning as in Section 3.4, we have

nt = min

(
1, min

0≤s≤t

L

Ss

)
. (36)

The dynamic withdrawal benefit is a contract in which the equity-indexed benefit function
at the death of the investor, Tx, is of the form

bwithdrawal(Tx, STx) , 1−min

(
1, min

0≤t≤Tx

L

St

)
STx .
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The discounted value of the dynamic withdrawal benefit at time 0 is given by:

E
[
e−rTx

(
1−min

(
1, min

0≤t≤Tx

L

St

))
STx

]
= E

[
e−rTxSTx

(
1− min

0≤t≤Tx

L

St

)+
]

= S0E

[
e−rTx

STx
S0

(
1− min

0≤t≤Tx

L

St

)+
]

= S0Ẽ

[(
1− min

0≤t≤Tx

L

St

)+
]
,

where Q̃ is the equivalent martingale measure defined in (10). By invoking Proposition 2.6,
the remaining computation follows analogously as in the case of the dynamic fund protection.

4 T -year contingent options and De Moivre’s Law

4.1 T -year contingent options

In Section 3, we assume that the maturities of the contracts coincide with the death of the
investor. In this section, we relax this assumption by working with the defective probability
function, denoted by f̃Tx (see Gerber et al. (2012)), where

f̃Tx(t) , fTx(t)1{Tx<T}. (37)

In other words, the GMDB contracts only provide the payment if the death of the investor
comes before the pre-specified time horizon T .

Instead of reworking every problem in Section 3 under f̃Tx , we illustrate the flexibility of the
Laplace transform technique by valuing a basic call option from Section 3.1 and the standard
lookback option from Section 3.2.1 under the defective probability function f̃Tx .

For the following examples, let Tx be the time-until-death random variable with the density
function (37).

Example 4.1. Following the proof of Theorem 3.1, the Laplace transform of the T -year
maturity basic call option, with respect to k = − log(K/χ) where χ > K, is given by∫ ∞

−∞
e−ϕkχEi

[
e−rTx

(
S0

χ
eXTx − e−k

)+
]

dk

=

∫ ∞
0

αe−(α+r)t1{t<T}χEi

[∫ ∞
− log(S0χ eXt)

e−ϕk
(
S0

χ
eXt − e−k

)
dk

]
dt

= χ

(
S0

χ

)ϕ+1
α

ϕ(ϕ+ 1)
e>i
[
I− e−((α+r)I−K[ϕ+1])T

]
((α + r)I−K[ϕ+ 1])−11.
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Example 4.2. Consider the valuation of the floating-strike lookback put option with maturity
T . Following the proof of Theorem 3.2, we readily have

LP (S0,M, Tx, i) = S0

∫ ∞
z

em
∫ ∞

0

αe−(α+r)t1{t<T}Qi[M
X
t ≥ m]dtdm

+M

∫ ∞
0

e−(α+r)t1{t<T}dt− S0.

Since ∫ ∞
0

e−(α+r)t1{t<T}Qi[τm < t]dt =
1

α + r

[∑
j∈E

Ei[e−(α+r)τm1{Jτm=j}]− e−(α+r)T

]
,

we have the value of the T -year standard floating-strike lookback put as follows

LP (S0,M, Tx, i) =
αS0

α + r

∫ ∞
z

em

[∑
j∈E

Ei[e−(α+r)τm1{Jτm=j}]− e−(α+r)T

]
dm

+
Mα

α + r
(1− e−(α+r)T )− S0.

As shown in Examples 4.1 and 4.2, the valuations of T -year options come effortlessly under
the Laplace transform framework.

4.2 De Moivre’s Law

The explicit formulation of the T -year option can be extended to the case when the time-
until-death random variable Tx is uniformly distributed. More specifically, from Gerber et
al. (2012), consider the case when Tx has a uniform distribution on [0, ω− x], where ω is the
maximal possible age. Consider the maturity of the contract T ≤ ω − x. It follows by De
Moivre’s Law that the truncated density function of Tx under the uniform distribution on
[0, ω − x], denoted by funifTx

, takes the form

funifTx
(t) ,

1

ω − x
lim
α→0

1

α
fTx(t)1{t<T}. (38)

As discussed in Gerber et al. (2012), the seemingly innocuous expression (38) has a profound
consequence: the valuation scheme we have discussed so far under the exponential mortality
density function can be carried out in an exact manner by simply replacing (21) with (38).
The following example illustrates this insight in greater detail.

Example 4.3. Let us illustrate the idea by revisiting the T -maturity basic call option in
Example 4.1 under funifTx

. For ϕ ∈ (0,min{ηj1 − 1}) and k = − log(K/χ), an application of
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Fubini’s Theorem gives∫ ∞
−∞

e−ϕkχEi

[
e−rTx

(
S0

χ
eXTx − e−k

)+
]

dk

=

∫ ∞
0

e−rtfunifTx
(t)χEi

[∫ ∞
− log(S0χ eXt)

e−ϕk
(
S0

χ
eXt − e−k

)
dk

]
dt

= lim
α→0

∫ ∞
0

αe−(α+r)t 1

α(ω − x)
1{t<T}χEi

[∫ ∞
− log(S0χ eXt)

e−ϕk
(
S0

χ
eXt − e−k

)
dk

]
dt

=
χ
(
S0

χ

)ϕ+1

ϕ(ϕ+ 1)(ω − x)
e>i
[
I− e−(rI−K[ϕ+1])T

]
(rI−K[ϕ+ 1])−11.

Other options considered in this paper can analogously be computed under the uniformly
mortality density function funifTx

.

5 Numerical examples

5.1 GMDBs under a life table

5.1.1 Calibrating combinations of exponential functions to a life table

To extend the scope of the Laplace transform framework beyond the case of exponentially-
distributed Tx, we price the life-contingent claims discussed in Section 3 based on a life table
in this section. More specifically, we revisit the valuations of the basic options, lookback
options, and the barrier options by calibrating combinations of exponential functions to a
life table. We use the Illustrative Life Table in Appendix 2A of Bowers et al. (1997) as our
mortality table. Let f(t, l; a,b) be a combination of exponential functions, i.e.

f(t, l; al,bl) ,
l∑

i=1

aie
−bit, (39)

where al , (a1, ..., al),bl , (b1, ..., bl) with bi > 0, for i = 1, ..., l, and
∑l

i=1 ai = 1. We
denote by Ml the mortality model with the survival function f(t, l; al,bl) and we denote
TMl

x for the corresponding time-until-death random variable under the mortality modelMl.

We first fit the mortality data for a person at age x with the survival function f(t, l; al,bl) in
(39). More specifically, for fixed l, n ∈ N, we find (al,bl) by solving the following non-linear
least-squares problem:

S(al,bl) , min
al,bl

n∑
t=1

[tpx − f(t, l; al,bl)]
2,

where tpx denotes the empirical probability that a person at age x will survive for t more
years. We denote by qx+t and q̂lx+t, respectively, the one-year mortality rate of a person at age
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x, in t years based on the life table and based on the calibrated survival function f(t, l; al,bl),
i.e.

q̂lx+t ,
f(t, l; al,bl)− f(t+ 1, l; al,bl)

f(t, l; al,bl)
. (40)

For illustration, we calibrate three survival functions f(t, l; al,bl), for l = 3, 5, 10, using the
Illustrative Life Table for a person at age x = 30 when n = 25. The fitted combinations of
exponential functions are shown as follows:

f(t, 3; a3,b3) = −1.6862e−0.0387858t + 0.1623e−0.109792t + 2.5239e−0.0197795, (41)

f(t, 5; a5.b5) = 1.0893e−0.0212392t + 0.8730e−0.0219805t + 1.0817e−0.0708229

+0.6860e−0.0215123t − 2.7301e−0.0481505t, (42)

f(t, 10; a10,b10) = −0.7306e−0.088166t + 0.2259e−0.179319t + 0.6499e−0.0142838

+0.3749e−0.172757t + 0.4144e−0.172873t − 0.3345e−0.0904136t

+0.4155e−0.0158551t − 0.5267e−0.270833t + 0.4198e−0.0164353t

+0.0914e−0.437897t, (43)

with total errors
∑n

t=1[tp30− f(t, l; al,bl)]
2 equal to 0.0000159489 for l = 3, 0.0000125984 for

l = 5, and 0.00000188246 for l = 10.
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Figure 1: Performance of the fitted combinations of exponential functions f(t, l; al,bl) for
l = 3, 5, 10. Here, Ml corresponds to q̂l30+t computed under the mortality model Ml (see
(40)), for l = 3, 5, 10.

Figure 1 provides the visual comparisons of the computed mortality rates q̂3
30+t, q̂

5
30+t, and

q̂10
30+t against the empirical mortality rates q30+t.

5.1.2 Valuations with the calibrated mortality models

With the calibrated mortality models (Models M3, M5, and M10) in place, we proceed
to compute the options discussed in Section 3 under these calibrated mortality models. In
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Regime 1

σ1 η11 η12 p1 λ1 q12

0.1 40 60 0.75 2 0.1

Regime 2

σ2 η21 η22 p2 λ2 q21

0.4 60 10 0.25 0.5 0.2

Table 1: Model parameters

particular, we focus on computing the fair values of the basic options, floating strike options,
and the up-and-out call options.5 For the sake of illustration, we focus on the case of two
regimes, i.e. E = {1, 2}. All computations are performed on a desktop with an Intelr 1.4GHz
processor.

Table 1 summarizes the model parameters for the fair valuations of the options in this section.
In Table 1, Regime 1 represents the “good” economy case, i.e. when the underlying asset
has low volatility (σ1) and higher probability (p1) of experiencing small-sized upward (η11)
jumps than experiencing small-sized downward (η12) jumps. On the other hand, Regime 2
represents the “bad economy” case, i.e. when the underlying asset has high volatility (σ2)
and lower probability (p2) of experiencing small-sized upward (η21) jumps than experiencing
larger-sized downward (η22) jumps. Moreover, we set q12 = 0.1 and q21 = 0.2 implying that
the average durations of the good and bad economic states are 1

q12
= 10 years and 1

q21
= 5

years, respectively.

Table 2 displays prices of the basic put option with various strike prices. The average com-
putation time for each option is 0.0624 seconds. In Table 2, we see that increasing the strike
price K increases the fair values of the corresponding basic put option. This is logical as
increasing the strike price increases the probability of the put option to be in-the-money at
time Tx.

Applying Theorem 3.2, we obtain values of floating strike lookback put options. The nu-
merical results are presented in Table 3. As discussed in Section 3.2, Theorem 3.2 yields
a closed-form solution for each lookback put option and hence the computational time is
negligible.

We now turn to numerical examples for up-and-out call options. We perform the bilateral
Abate-Whitt algorithm to Theorem 3.3 to recover the value of the up-and-out call option.
The results are summarized in Table 4. The average computation time is 0.2340 seconds.
In Table 4, we see that increasing the upper barrier H increases the corresponding price
of the up-and-out call option. This can be explained by the fact that increasing the upper
barrier reduces the up-crossing probability of the underlying asset. This in turn increases the
probability of the up-and-out option remaining “alive” at maturity Tx, thereby increasing the
value of the corresponding option.

Next, we compare the option values in the good (Regime 1) and bad (Regime 2) economic
regimes in Tables 2, 3, and 4, based on the total squared volatility of the asset price in each

5In Section 3, we have shown that the dynamic fund protection and dynamic withdrawal benefit are
structurally equivalent to lookback options. In this respect, it suffices for us to compute the fair values of
lookback options for illustration here.
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Initial regime: Regime 1 (J0 = 1)
HH

HHHHK
Ml M3 M5 M10

95 0.6060 0.6402 0.5912
100 0.7519 0.7876 0.7377
105 0.9073 0.9445 0.8940
110 1.0714 1.1105 1.0596
115 1.2439 1.2849 1.2339
120 1.4241 1.4672 1.4163
125 1.6117 1.6571 1.6065

Initial regime: Regime 2 (J0 = 2)
HH

HHHHK
Ml M3 M5 M10

95 1.4024 1.4506 1.4301
100 1.5800 1.6309 1.6099
105 1.7657 1.8193 1.7982
110 1.9589 2.0155 1.9944
115 2.1593 2.2190 2.1982
120 2.3665 2.4294 2.4089
125 2.5800 2.6462 2.6263

Table 2: Basic put option with various strike prices K and mortality models Md, for d =
3, 5, 10.

Note: The computations of the basic put options are performed based on the parameter inputs given in Table
1. Other parameters are S0 = 100, r = 0.05, N = 50, m = 18, and χ = 1030. During the implementation of
the bilateral Abate-Whitt algorithm, the scaling parameter χ is set to ensure that α+r > maxj∈E{κj(ϕ+1)}
in Theorem 3.1 is satisfied.

Initial regime: Regime 1 (J0 = 1)
H
HHH

HHM
Ml M3 M5 M10

105 60.7740 60.7333 60.7136
110 60.7908 60.7500 60.7293
115 60.8174 60.7765 60.7543
120 60.8532 60.8123 60.7883
125 60.8978 60.8570 60.8310
130 60.9508 60.9102 60.8822
135 61.0119 60.9716 60.9417

Initial regime: Regime 2 (J0 = 2)
H

HHH
HHM
Ml M3 M5 M10

105 62.6244 62.6127 62.6229
110 62.6462 62.6346 62.6448
115 62.6810 62.6698 62.6798
120 62.7279 62.7172 62.7270
125 62.7861 62.7759 62.7855
130 62.8547 62.8453 62.8547
135 62.9331 62.9246 62.9338

Table 3: Floating-strike lookback put option with various initial maximum asset prices M
and mortality models Ml, for d = 3, 5, 10.

Note: The computations of the floating-strike lookback put options are performed based on the parameter
inputs given in Table 1. Other parameters are S0 = 100 and r = 0.05.
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Initial regime: Regime 1 (J0 = 1), K=95
HHH

HHHH
Ml M3 M5 M10

115 0.1246 0.1262 0.1160
120 0.1600 0.1618 0.1495
125 0.1950 0.1971 0.1837
130 0.2299 0.2323 0.2187
135 0.2650 0.2678 0.2546
140 0.3004 0.3036 0.2914
145 0.3363 0.3399 0.3291

Initial regime: Regime 1 (J0 = 2), K=95
HHH

HHHH
Ml M3 M5 M10

115 0.0814 0.0835 0.0828
120 0.1061 0.1082 0.1069
125 0.1317 0.1339 0.1319
130 0.1581 0.1604 0.1580
135 0.1853 0.1878 0.1849
140 0.2133 0.2160 0.2128
145 0.2420 0.2450 0.2415

Table 4: Up-and-out call option with various upward barriers H and mortality models Md,
for d = 3, 5, 10.

Note: The computations of the up-and-out call options are performed based on the parameter inputs given
in Table 1. Other parameters are S0 = 100, r = 0.05, N = 50, m = 18, and χ = 1030. During the
implementation of the bilateral Abate-Whitt algorithm, the scaling parameter χ is set to ensure that α+ r >
maxj∈E{κj(ϕ+ 1)} in Theorem 3.6 is satisfied.

initial regime.6 The total squared volatility in Regime 1 is σ2
1,Total = 1.1831%, whereas the

total volatilty in Regime 2 is σ2
2,Total = 16.3710%. Table 2 confirms our intuition that the

prices of basic put options in Regime 2 are higher than those in Regime 1, as higher volatility
has an upward price pressure on the values of the corresponding basic options. Analogous
patterns and interpretations can be used to explain the fair values of the standard lookback
options in Regimes 1 and 2 in Table 3. Yet, the values of the up-and-out call options in
Table 4 indicate that the values in Regime 2 are smaller than those in Regime 1. Since the
total volatility in Regime 2 is higher than that in Regime 1, the probability of the underlying
asset up-crossing the upper barrier in initial Regime 2 is higher than that in Regime 1,
ceteris paribus. Hence, the probability of the up-and-out call option to expire worthless at
Tx in Regime 2 is greater than that in Regime 1, which translates into the fair values of the
up-and-out call option in Regime 2 to be smaller than those in Regime 1.

Finally, it is worth noting that the fair values in Tables 2, 3, and 4 under M3, M5, and
M10 are close to one another, with the average differences being within one decimal point.
From these numerical results, we see that the Laplace transform technique is relatively stable
across different (calibrated) mortality models.

6The total squared volatility under each initial regime i is given by the following formula:

σ2
i,Total , σ2

i + σ2
i,Jump,

where

σ2
i,Jump , λi

{[
piηi1
ηi1 − 2

+
(1− pi)ηi2
ηi2 + 2

]
−
[
piηi1
ηi1 − 1

+
(1− pi)ηi2
ηi2 + 1

]2
}
, ηi1 > 2, i ∈ E.
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6 Conclusion

In this paper, we have extended the models in Gerber et al. (2012, 2013) to a regime-
switching jump-diffusion model. Using the Laplace transform approach, common options such
as basic, lookback, and barrier options, as well as dynamic fund protections, admit closed-
form representations, thanks to the explicit results provided in Section 2.2. The numerical
Laplace inversion scheme enables us to efficiently recover their fair values within a fraction of
a second by using any common desktop computer. The advantage of the Laplace transform
becomes apparent in the cases of valuing the options with pre-specified maturities. We
show that valuing the T -year options under the uniform mortality density function comes
effortlessly by using the Laplace transform framework. Numerical examples in Section 5.1.2
indicate that our Laplace transform methodology is robust when we approximate the life table
with a combination of exponential distributions. One possible extension of our approach is
to value GMDBs beyond the family of exponential mortality models. In particular, Lin and
Liu (2007) demonstrated that phased-type distributions can also fit life tables accurately. In
this respect, it will be interesting to see if the present framework can be adopted to include
their phased-type mortality law.

One typical option we have not covered in this paper is the multi-asset option. For the case of
a Margrabe option, also known as exchange option, the technique covered in this papers comes
naturally with appropriate change of measure. In the case of spread options, in particular
in the case of spread call option with payoff structure at maturity: (S1

Tx
− S2

Tx
− K, 0)+,

special care must be taken as the change of measure technique does not yield a simpler
computation. For other options such as dynamic fund protection/withdrawal in which the
first passage time distribution plays a critical role in the computation, the problem becomes
more delicate as we need to specify the correlation structure of two or more assets. For the
case of regime-switching Brownian motions, the problem is manageable as the correlation
matrix fully captures the dependence among the assets. With the presence of jumps, the
degree of difficulty escalates. The problem of valuing multi-asset options will be left for
future research.
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A First passage time distribution of (X̃t, J̃t)t≥0

In this appendix, we provide a self-contained exposition on the first passage time distribution
of the fluid process (X̃t, J̃t)t≥0. More importantly, we show the equivalence between the first
passage time distribution of the original process (Xt, Jt)t≥0 and that of the fluid process
(X̃t, J̃t)t≥0.

We begin with the conditional independence and memoryless properties of the original process
(Xt, Jt)t≥0.

A.1 Conditional independence and memoryless properties of (Xt, Jt)t≥0

Assume that X0 = 0 and define

τU , inf{t > 0 : Xt ≥ U}, for U > 0.

Lemma A.1. For any x > 0, we have

Q (τU ≤ t, XτU − U > x, JτU = j) = e−ηj1xQ (τU ≤ t, XτU − U > 0, JτU = j) .

Proof. First, note that, for any x > 0, the event {XτU − U > x, JτU = j} occurs only by an
upward jump. Hence, denoting by Tn, n = 1, 2, . . . , the arrival times of the Poisson process
(N j

t )t≥0, where JTn = j, we obtain

Q (τU ≤ t,XτU − U > x, JτU = j) =
∞∑
n=1

Q (Tn = τU ≤ t,XτU − U > x, JτU = j) .

Now, due to the conditional independence and the memoryless property of exponential dis-
tributions, we have

Q (XTn − U > x|XTn− < U, Tn = τU ≤ t, JTn = j) = e−ηj1x.

Since Q (XTn − U > 0|XTn− < U, Tn = τU ≤ t, JTn = j) = 1, it follows that

Q
(

max
0≤s<Tn

Xs < U,XTn − U > x, Tn = τU ≤ t, JTn = j

)
= Q

(
XTn − U > x

∣∣∣ max
0≤s<Tn

Xs < U, Tn = τU ≤ t, JTn = j

)
×Q

(
max

0≤s<Tn
Xs < U, Tn = τU ≤ t, JTn = j

)
= e−ηj1xQ

(
XTn − U > 0

∣∣∣ max
0≤s<Tn

Xs < U, Tn = τU ≤ t, JTn = j

)
×Q

(
max

0≤s<Tn
Xs < U, Tn = τU ≤ t, JTn = j

)
= e−ηj1xQ

(
max

0≤s<Tn
Xs < U,XTn − U > 0, Tn = τU ≤ t, JTn = j

)
= e−ηj1xQ (Tn = τU ≤ t,XτU − U > 0, JτU = j) .

The lemma follows at once by taking the summation over n.

27



The next result follows immediately by letting t → ∞ and observing that, on the event
{XτU > U}, the first passage time τU is finite almost surely by definition. That is, we obtain
the conditional memoryless property of the exponential jumps.

Corollary A.2. For any x > 0, we have

Q (XτU − U > x|XτU − U > 0, JτU = j) = e−ηj1x.

Similarly, for downward jumps, we have

Q (XτL − L < −x|XτL − L < 0, JτL = j) = e−ηj2x,

where τL , inf{t > 0 : Xt ≤ L}, L < 0.

A.2 Fluidization

Observe that the path of the regime-switching jump-diffusion process (Xt, Jt)t≥0 in (5) ex-
hibits discontinuities, due to the presence of the compound Poisson process (N j

t )t≥0, j =
1, ..., d under each regime j. Following the ideas of Asmussen et al. (2004), we can remove all
the jumps from the original process (Xt, Jt)t≥0 through a transformation, called fluidization.
We hereafter denote the transformed process as (X̃t, J̃t)t≥0 and call it the fluid process.

In simple terms, the fluid model (X̃t, J̃t)t≥0 is constructed by replacing an upward jump by a
linear segment with slope of 1 and a downward jump by a linear segment with slope of −1.
To move from the original regime-switching jump-diffusion model to its fluid counterpart,
we augment the following states. Denote by E(j,0), E(j,+) and E(j,−) the states in which
the process behaves as a pure diffusion, exhibits an upward jump and a downward jump,
respectively, when the state is j ∈ E. Under such a characterization, the transformed process
no longer possesses jump, whence it has continuous sample paths. The state space of the
regime-switching fluid model is denoted by

Ẽ = {E(1,0), E(1,+), E(1,−), E(2,0), E(2,+), E(2,−), . . . , E(d,0), E(d,+), E(d,−)},

and the process indicating the underlying state by (J̃t)t≥0.

Note that the time frame under the fluid model is different from that of the original model.
To restrict the elongated time so that the stopping time under the fluid model has the same
distribution as the stopping time under the original model, we follow the concepts adopted
in Jiang and Pistorius (2008) to define the virtual time and its right-continuous inverse.

Definition A.3. A function T : R → R is called a virtual time and is defined as, for every
t ≥ 0,

T (t) =

∫ t

0

1{J̃s∈E0}ds,

where E0 , {E(1,0), ..., E(d,0)} ⊂ Ẽ. The right-continuous inverse of T is defined as

T−1(s) = inf{t ≥ 0 : T (t) > s}.
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From Definition A.3, the virtual time T (t) takes out all the elongated time due to jumps.
Furthermore, by the definition of the inverse T−1(s) of the virtual time, it follows that
(X̃T−1(t), J̃T−1(t)) and (Xt, Jt) have the same distribution.

Note that the restriction also applies to stopping times, and thus one can conclude that T (τ̃B)
and τB agree almost surely, where τB is a stopping time of the original model and τ̃B is the
corresponding stopping time of the fluid model. By adopting the concept of virtual time
T (t) in Definition A.3, finding the first passage time distribution under the original model
(Xt, Jt)t≥0 is equivalent to finding the first passage time distribution under the fluid model
(X̃t, J̃t)t≥0:

Lemma A.4. Let T (t) be the virtual time of the fluid model. For a stopping time τB of
the original jump model, we have T (τ̃B) = τB (pathwise) almost surely, where τ̃B is the
corresponding stopping time of the fluid model.

A.3 Finding Ei[e−aτB+bXτB ]

With the concepts of conditional independence and memoryless properties and the fludization
in place, we now return to our study on the first passage time distribution of the regime-
switching jump-diffusion process (Xt, Jt)t≥0 first exiting a pre-specified interval [L,U ].

The definition of τB in (11) entails that it is a stopping time with respect to the σ-algebra
σ(Xt, Jt) generated by (Xt, Jt)t≥0 , i.e. for any t ≥ 0, we have

{τB < t} ∈ σ(Xt, Jt).

In addition, this first passage time problem also includes the single-barrier passage times,
where one can obtain the solutions from the double-barrier problem immediately by taking
U →∞ for the first passage time to the lower barrier and by L→ −∞ for the first passage
time to the upper barrier.

Using Lemma A.4, we have

Ei
[
e−aτB+bXτB

]
= Ei

[
e−aT (τ̃B)+bX̃τ̃B

]
, for a > 0, b ∈ R\{ηj1,−ηj2, j = 1, ..., d},

where τ̃B is the first passage time of (X̃t, J̃t)t≥0 defined by

τ̃B , inf{t > 0 : X̃t /∈ [L,U ]};

and T (t) is the virtual time of the fluid model defined in Definition A.3. Hence, it suffices to
solve

Ei
[
exp(−aT (τ̃B) + bX̃τ̃B)

]
. (44)

As in the case of τB, the definition of τ̃B also implies that it is a stopping time with respect
to the filtration σ(X̃t, J̃t). In addition to the given restriction on b, we also assume that b > 0
in order to study the joint distribution of T (τ̃B) and X̃τ̃B .
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The fluid process (X̃t, J̃t)t≥0 has continuous sample paths, whence either X̃τ̃B = U or X̃τ̃B = L
possibly occurs. Therefore, from (44), it is logical to define

π
(k,∆)
(i,j) [a] , Ei

[
exp(−aT (τ̃B))1{J̃τ̃B=(j,k), X̃τ̃B=∆}

]
, (45)

where i, j ∈ {1, ..., d}, k ∈ {0,+,−}, and ∆ ∈ {L,U}. For example, the event {J̃τ̃B =
(j,+), X̃τ̃B = U} corresponds to the case of an overshoot, while the event {J̃τ̃B = (j, 0), X̃τ̃B =
U} corresponds to the situation that the process diffuses to the upper barrier U with no over-
shoot. The downward case can be interpreted analogously.

In terms of (45), define

π[a] ,
(
π

(0,U)
(i,1) [a], π

(+,U)
(i,1) [a], . . . , π

(0,L)
(i,d) [a], π

(−,L)
(i,d) [a]

)>
. (46)

In view of (46), it is now clear that Theorem 2.7 provides the representation of Ei [exp(−aT (τ̃B))],
which in turn provides the representation of Ei [exp(−aτB)] by Lemma A.4.

The proofs of Theorem 2.7 and Corollary 2.8 in Section 2.2 hinge on the following lemma.

Lemma A.5. Suppose that

−∞ < −ηd2 < ... < −η12 < 0 < η11 < ... < ηd1 <∞.

Then, for any a > 0, the equation

det
(
K̃a[u]

)
= 0, (47)

where K̃a[u] is defined in (12), has a total of 4d distinct real roots. Moreover, let %1,a < · · · <
%4d,a be the roots. Then, these roots are located as follows

−∞ < %1,a < −ηd2 < %2,a < −η(d−1)2 < ... < −η12 < %2d−1,a < β2,a < %2d,a < 0

< %2d+1,a < β1,a < %2d+2,a < η11 < %d+3,a < ... < η(d−1)1 < %4d−1,a < ηd1 < %4d,a <∞,

where β1,a and β2,a are the roots of g1(s) , κ1(u)− a + q11 = 0 such that −η12 < β2,a < 0 <
β1,a < η11.

Proof. (Sketch of Proof)
It suffices to consider the case of d = 2, as the proof for the d > 2 regimes follows analogously.
Consider the case when d = 2. Direct computation shows that, for d = 2,

det
(
K̃a[u]

)
, f(u) = g1(u)g2(u)− q11q22,

where gj(u) = κj(u)− a− qjj with κj(u), for j = 1, 2, takes the form in (4). Under the given
assumption, we observe that

gj(ηj1−) = gj(−ηj2+) = +∞, gj(ηj1+) = gj(−ηj2−) = −∞,

which immediately implies that

f(ηj1−) = f(−ηj2+) = +∞, f(ηj1+) = f(−ηj2−) = −∞.
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In addition, we also see that f(+∞) = +∞ and f(−∞) = +∞. Hence, since f(u) is
continuous except at the singularities η11, η21, −η12, and −η22, there exists at least one root
at each of the intervals, (−∞,−η22), (−η22,−η12), (η11, η21), and (η21,∞).

To obtain the remaining roots, since β1,a and β2,a are the roots of g1(u) = 0, we have f(β1,a) =
f(−β2,a) = −q11q22 < 0. Furthermore, observe that f(0) = (a + q11)(a + q22) − q11q22 > 0.
Thus, since f(u) is continuous on the interval (−η12, η11), there exists at least one root at
each of the intervals, (−η12, β2,a), (β2,a, 0), (0, β1,a), and (β1,a, η11).

So far, we have found eight distinct real roots for f(u) = 0. Since f(u) is a polynomial of
degree 8, the proof is completed.

We are now ready to prove Theorem 2.7 and Corollary 2.8 .

Proof of Theorem 2.7
Let Yt = −aT (t)/b and Zt = X̃t + Yt, and define the matrix-valued process

M(a, b, t) ,
∫ t

0

ebZs1J̃sdsK̃0[b] + ebZ01J̃0 − ebZt1J̃t + b

∫ t

0

ebZs1J̃sdYs,

where 1J̃t∈(j,k), with j ∈ {1, ..., d}, k ∈ {0,+,−}, denotes a row vector of length of K̃a with

all zeros but a one on the position corresponding to regime j, phase k. The matrix K̃a[b] is
defined by (12). Since the sample paths of (X̃t, J̃t)t≥0 are continuous, we can apply Theorem
2(d) of Asmussen and Kella (2000) to conclude that M(a, t) is a zero-mean martingale. Note
that

b

∫ t

0

ebZs1J̃sdYs = −a
∫ t

0

ebZs1J̃s1{J̃s∈E0}ds = −a
∫ t

0

ebZs1J̃sI
+ds,

where I+ is the 3d× 3d diagonal matrix with 1 on positions E(j,0) or 0 elsewhere. It follows
that

M(a, b, t) =

∫ t

0

exp(bX̃t − aT (t))1J̃sds(K̃0[b]− aI+) + ebx1J̃0 − exp(bX̃t − aT (t))1J̃t

=

∫ t

0

exp(bX̃t − aT (t))1J̃sdsK̃a[b] + ebx1J̃0 − exp(bX̃t − aT (t))1J̃t .

In particular, post-multiplying the zero eigenvector hl[a] of K̃a[%l,a] defined in (13) to M(a, %l,a, t),
where l = 1, ..., 4d, we obtain the zero-mean vector-valued martingale

M̃(a, %l,a, t) , e%l,ax1J̃0h
l[a]− exp(%l,aX̃t − aT (t))1J̃th

l[a],

which, together with Doob’s optional sampling theorem E[M̃(a, %l,a, t ∧ τ̃B)] = 0, yields that

e%l,ay1J̃0h
l[a] = E[exp(%l,aX̃τ̃B − aT (τ̃B))1J̃τ̃B

]hl[a], l = 1, ..., 4d. (48)

The terms E[exp(%l,aX̃τ̃B − aT (τ̃B))1J̃τ̃B
] can be readily computed by observing that

X̃τ̃B =

{
L for J̃τ̃B = (j, 0), (j, −),

U for J̃τ̃B = (j, 0), (j, +).
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The system of linear equations in (17) now follows by noting that J̃0 = (i, 0) and decomposing
the expectation in (48) with respect to the π[a]’s defined in (46).

Parallel to the first passage time distribution under the regime-switching Brownian motion
framework in Guo (2001), the existence of the solution to the system of linear equations
in (17) is established by noting that (17) is known as the Vandermonde system of linear
equations. The Vandermonde system of linear equations is uniquely solvable if and only if
the associated function in (47) has 4d distinct roots (see Lemma A.5).

Proof of Corollary 2.8
First note that

1{JτB=j} = 1{J̃T (τ̃B)=(j,0)} + 1{J̃T (τ̃B)=(j,+)} + 1{J̃T (τ̃B)=(j,−)}.

Recall that the event {J̃T (τ̃B) = (j, 0)} corresponds to the situation that the process (X̃t, J̃t)t≥0

diffuses to either the upper barrier U or the lower barrier L when JτB = j, but not to result
in an overshoot or undershoot. The Laplace transforms of XτB for these cases are simply
given by

f̂U(j,0)(U) , ebU , f̂L(j,0)(L) , ebL,

respectively. It follows that

Ei
[
e−aτB+bXτB 1{J̃T (τ̃B)=(j,0)}

]
= Ei

[
e−aτB+bU1{J̃τ̃B=(j,0), X̃τ̃B=U}

]
+ Ei

[
e−aτB+bL1{J̃τ̃B=(j,0), X̃τ̃B=L}

]
= π

(0,U)
(i,j) ebU + π

(0,L)
(i,j) ebL,

where the π[a]’s are given by (45).

Next, the event {J̃T (τ̃B) = (j,+)} corresponds to the case of an overshoot, when JτB = j. From
Corollary A.2, we know that the overshoot XτB − U is independent of τB and exponentially
distributed. Hence, we obtain

Ei
[
e−aτB+bXτB 1{J̃T (τ̃B)=(j,+)}

]
= ebUEi

[
e−aτB+b(XτB−U)1{J̃τ̃B=(j,+)}

]
= ebUEi

[
e−aτB1{J̃τ̃B=(j,+)}

]
Ei
[
eb(XτB−U)1{J̃τ̃B=(j,+)}

]
= π

(+,U)
(i,j) f̂U(j,+)(U),

where

f̂U(j,+)(U) , ebU
∫ ∞

0

ebyηj1e−ηj1ydy =
ηj1

ηj1 − b
ebU .

Similarly, for the case of an undershoot, we have

Ei
[
exp(−aτB + bXτB)1{J̃T (τ̃B)=(j,+)}

]
= π

(−,L)
(i,j) f̂

L
(j,−)(L),

where

f̂L(j,−)(L) , ebL
∫ 0

−∞
ebyηj2eηj2ydy =

ηj2
ηj2 + b

ebL.

Summing the terms π
(k,b)
(i,j) f̂

∆
(j,k)(b), where f̂∆

(j,k)(b) is defined in (19), for i, j ∈ {1, .., d}, k ∈
{0,+,−}, and ∆ ∈ {L,U}, the desired result follows.
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B Appendix: Valuation of fractional lookback option

Consider a fractional floating strike lookback put option with the equity-indexed benefit
function at the exponentially-distributed maturity Tx with mean 1

α
(see (21)) given by

bfLookback(Tx, STx) ,

(
γ max

0≤t≤Tx
St − STx

)+

, (49)

where γ ∈ (0, 1]. We valuate this fractional floating strike lookback put option at time 0, i.e.

E

[
e−rTx

(
γ max

0≤t≤Tx
St − STx

)+
]

= E

[
e−rTxSTx

(
γ max

0≤t≤Tx

St
STx
− 1

)+
]
.

Define Q̃ as an equivalent martingale measure via the Radon-Nikodym derivative

dQ̃
dQ

∣∣∣
FTx

= e−rTx
STx
S0

,

under which STx is the numéraire. Then, it follows that

S0E

[
e−rTx

STx
S0

(
γ max

0≤t≤Tx

St
STx
− 1

)+
]

= S0Ẽ

[(
γ max

0≤t≤Tx
eXt−XTx − 1

)+
]
. (50)

Hence, we can apply Proposition 2.6 to obtain the dynamics of max0≤t≤Tx eXt−XTx under
measure Q̃, provided that we know the dynamics of max0≤t≤Tx eXt−XTx under Q. To compute
the distribution of max0≤t≤Tx eXt−XTx under Q, we first need to know the distribution of
eXt−XTx under Q, for all t ∈ [0, Tx]. For the case of Lévy processes, the answer is immediate.
The property of stationary increments of Lévy processes immediately implies that

eXt−XTx
D
= eXt−Tx

D
= e−XTx−t .

Unfortunately, the property of stationary increments generally does not hold in our regime-
switching model, due to the presence of the Markov chain. For the special case when the
Markov chain (Jt)t≥0 is reversible, the property of stationary increments is maintained and
we can still compute the distribution of eXt−XTx . In the remaining section, we complete the
analysis on the fractional lookback option under the additional assumption that the Markov
chain (Jt)t≥0 is reversible.

Lemma B.1. Let (Xt, Jt)t≥0 be the regime-switching, double-exponential jump-diffusion pro-
cess in Definition 2.1. If the Markov chain (Jt)t≥0 is also reversible, then

max
0≤t≤Tx

eXt−XTx
D
= max

0≤t≤Tx
e−XTx−t .

Proof. For t ≥ 0, let {t0 < ... < tN} be an arbitrary partition on [t, Tx], i.e. t = t0 < ... < tN =
Tx. Let u0, u1, ..., uN ∈ R. We first study the joint distribution of (Xt0−XtN , ..., XtN−1

−XtN ).
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Since uk [Xtk −XtN ] = uk

[∑N
l=k+1

(
Xtl−1

−Xtl

)]
, it follows that

u0

[
N∑
l=1

(
Xtl−1

−Xtl

)]
+ u1

[
N∑
l=2

(
Xtl−1

−Xtl

)]
+ · · ·+ uN−2

[
N∑

l=N−1

(
Xtl−1

−Xtl

)]
+uN−1

[
XtN−1

−XtN

]
= u0 [Xt0 −Xt1 ] + (u0 + u1) [Xt1 −Xt2 ] + · · ·+

(
N−1∑
l=1

ul−1

)[
XtN−2

−XtN−1

]
+

(
N∑
l=1

ul−1

)[
XtN−1

−XtN

]
. (51)

Using (51), the joint moment generating function of (Xt0 −XtN , ..., XtN−1
−XtN ) becomes

EJt0

{
exp

(
u0[Xt0 −XtN ] + u1[Xt1 −XtN ] + · · ·+ uN−2[XtN−2

−XtN ] + uN−1[XtN−1
−XtN ]

)}

= EJt0

{
exp

(
u0 [Xt0 −Xt1 ] + (u0 + u1) [Xt1 −Xt2 ] + · · ·+

(
N−1∑
l=1

ul−1

)[
XtN−2

−XtN−1

])

·EJtN−1

{
exp

[(
N∑
l=1

ul−1

)(
XtN−1

−XtN

)]}}
=

(
C1

)
Jt0Jt1

·
(
C2

)
Jt1Jt2

· · ·
(
CN

)
JtN−1

JtN

, (52)

where we define Cm , exp
[(
{κk (−

∑m
l=1 ul−1)}diag + Q

)
(tm − tm−1)

]
, for m = 1, ..., N .

In the case when the Markov chain (Jt)t≥0 is reversible, Q is then symmetric and therefore
matrices Cm, for m = 1, ..., N , are commutative. Therefore, the joint moment generating
function of (Xt0 −XtN , ..., XtN−1

−XtN ) in (52) equals to

(
C1

)
Jt0Jt1

·
(
C2

)
Jt1Jt2

· · ·
(
CN

)
JtN−1

JtN

=

[(
C1

)
Jt0Jt1

·
(
C2

)
Jt1Jt2

· · ·
(
CN

)
JtN−1

JtN

]>
=

(
CN

)
JtN JtN−1

· · ·
(
C2

)
Jt2Jt1

·
(
C1

)
Jt1Jt0

. (53)

On the other hand, the joint moment generating function of (−XtN−t0 , ..., −XtN−tN−1
) is

EJtN
{

exp
[
− uN−1XtN−tN−1

− uN−2XtN−tN−2
− · · · − u0XtN−t0

]}
= EJtN

{
exp

[
−

(
N∑
l=1

ul−1

)(
XtN−tN−1

)
−

(
N−1∑
l=1

ul−1

)(
XtN−tN−2

−XtN−tN−1

)
− · · · − (u0 + u1)

(
XtN−t1 −XtN−t2

)]
· EJtN−t1

{
exp

[
−u0

(
XtN−t0 −XtN−t1

)]}}
=

(
CN

)
JtN−tN JtN−tN−1

· · ·
(
C1

)
JtN−t1JtN−t0

, (54)
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where last equality follows by observing that

EJtN−tm

{
exp

[
−

(
m∑
l=1

ul−1

)(
XtN−tm−1 −XtN−tm

)]}

=

(
exp

{κk(− m∑
l=1

ul−1

)}
diag

+ Q

((tN − tm−1)− (tN − tm)
))

JtN−tmJtN−tm−1

=
(
Cm

)
JtN−tmJtN−tm−1

.

By the assumption that Markov chain (Jt)t≥0 is reversible, we have

(JtN−t0 , JtN−t1 , · · · , JtN−tN−1
)
D
= (Jt0 , Jt1 , · · · , JtN−1

). (55)

Combining (53), (54), and (55), it follows that

EJt0

{
exp

(
u0[Xt0 −XtN ] + u1[Xt1 −XtN ] + · · ·+ uN−2[XtN−2

−XtN ] + uN−1[XtN−1
−XtN ]

)}
=

(
CN

)
JtN JtN−1

· · ·
(
C2

)
Jt2Jt1

·
(
C1

)
Jt1Jt0

=
(
CN

)
JtN−tN JtN−tN−1

· · ·
(
C1

)
JtN−t1JtN−t0

= EJtN

{
exp

[
−uN−1XtN−tN−1

− uN−2XtN−tN−2
− · · · − u0XtN−t0

]}
. (56)

In other words, when Markov chain (Jt)t≥0 is reversible, we can conclude that

(Xt0 −XTx , ..., XtN−1
−XTx)

D
= (−XTx−t0 , ..., −XTx−tN−1

).

Since the partition {t0 < ... < tN} is chosen arbitrarily, we can apply Kolmogorov’s Extension
Theorem to show that

max
0≤t≤Tx

eXt−XTx
D
= max

0≤t≤Tx
e−XTx−t .

By Lemma B.1, the fractional floating-strike lookback put option in (50) becomes

S0E

[
e−rTx

STx
S0

(
γ max

0≤t≤Tx

St
STx
− 1

)+
]

= S0Ẽ

[(
γ max

0≤t≤Tx
eXt−XTx − 1

)+
]

= S0Ẽ

[(
γ max

0≤t≤Tx
e−XTx−t − 1

)+
]
,

indicating that the fair valuation the fractional floating-strike lookback option is essentially
analogous to the fair valuation of the floating-strike lookback put option, albeit under measure
Q̃.
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C Appendix: Numerical Laplace inversion

In this paper, we adopt the Fourier-series method first developed by Abate and Whitt (1992)
on the positive real line and later extended to the entire real line by Petrella (2004), calling
it the bilateral Abate-Whitt algorithm. The benefits of the Fourier-series method are that
the methodology provides error bounds and converges rapidly. We summarize the results of
Petrella (2004) in this appendix.

Denoted by F̂ (α) the Laplace transform of the function F (t) with respect to t ∈ R \ {0}.
Then F (t) can be recovered from F̂ (α) by the bilateral Abate-Whitt algorithm on R:

F (t) =
eA/2

2t
<
(
F̂

(
A

2t

))
+

eA/2

t

∞∑
j=1

<
(
F̂

(
A+ 2jπi

2t

))
+ ed, (57)

where i =
√
−1, A is an arbitrary positive constant controlling the discretization error ed,

and ed = e+
d + e−d , with

e+
d =

∞∑
j=1

e−jAF ((2j + 1)t)) and e−d =
−1∑

j=−∞

e−jAF ((2j + 1)t)).

Observe that (57) is almost identical to the Fourier-series method proposed by Abate and
Whitt (1992). The main difference here is that the function F is defined on R, whereas
Abate-Whitt approximation scheme works on the functions defined on R+.

To assess the accuracy of (57), Abate and Whitt (1992) provide the discretization error
bound for the case when t > 0. Assuming that F is bounded, i.e. F (t) < C for some C, the
discretization error ed = e+

d of the Abate-Whitt method can be bounded by

ed < C
e−A

1− e−A
' Ce−A.

Thus, we should set A large enough to make the error small. However, because of round-
off errors, increasing A would make inversion harder. In practice, Abate and Whitt (1992)
suggest that the choice of A = 18 should produce stable and accurate results. For the bilateral
Abate-Whitt algorithm, Cai and Kou (2011) numerically show that A ∈ [15, 55] yields stable
and accurate results.

For the case of (57), Theorem 1 of Petrella (2004) shows that we still maintain exponential
error bounds:

Theorem C.1. Suppose that t0 ∈ (A/θ−, A/2θ+) and

F ((2j + 1)t0) ≤

{
C+(θ+)e2θ+jt0 , θ+ > 0, for j ≥ 0,

C−(θ−)eθ
−jt0 , θ− > 0 for j < 0,

(58)

with θ− > 2θ+ > 0 and C+(θ+), C−(θ−) positive continuous functions, we can then obtain
the following exponential bounds for both discretization errors in (57):

e+
d = C+(θ+)

e−(A−2θ+t0)

1− e−(A−2θ+t0)
and e−d = C−(θ−)

e−(θ−t0−A)

1− e−(θ−t0−A)
.
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As remarked in Petrella (2004), the exponential bounds in Theorem C.1 only exist for the
values of the inversion point on a specific interval. In practice, however, this is not a significant
constraint, as we can often choose an appropriate inversion point by rescaling the inverted
function F (.). Note that for the case when the Laplace transform is performed on R+, as in
the case of Abate and Whitt (1992), no rescaling parameter is necessary and one can simply
follow (57) to invert the Laplace transform on t > 0.

Observe that (57) is an infinite-series representation. To obtain a high degree of accuracy, we
need to add a large number of terms. However, a large number of summands would certainly
hinder the speed of inversion. Fortunately, close inspection of the Abate-Whitt algorithm
reveals that it is in terms of an alternating series, which can be well approximated by an
appropriate binomial expansion. To speed up the inversion procedure, we can modify F (t)
by using the Euler algorithm

F (t) ≈
m∑
k=0

(
m

k

)
2−mSn+k(t), (59)

where

Sn(t) =
eA/2

2t
<
(
F̂

(
A

2t

))
+

eA/2

t

n∑
k=1

<
(
F̂

(
A+ 2kπi

2t

))
.

By employing the Euler algorithm, we find that any n > 40 and m > 15 produces stable
results. Since the summation involves less than 100 terms, the algorithm is very efficient.
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